ISOQuant - an integrated bioinformatics pipeline for evaluation and reporting of data independent (LC-MS\(^5\)) label-free quantitative proteomics data

Jörg Kuharev, Pedro Navarro, Ute Distler, Hansjörg Schild, Stefan Tenzer
Institute for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany

Objectives
Recent generation high-resolution mass spectrometers supporting ion-mobility separation (IMS) combined with advanced acquisition schemes such as UDM5 enable the reliable identification and quantification of over 4,000 proteins in a single nanoUPLC-MS run [1]. Large amounts of generated data induce new requirements for the data processing software. MS/HDMS/UDMS data require processing by proprietary vendor software Proteinlynx GlobalServer (PLGS) [2]. Preprocessed data require further analysis to confidently identify and quantify regulated proteins, typically done by stepwise application of different dedicated algorithms and exporting to common data formats for result interpretation and sharing with the community. We present ISOQuant, an integrated open source software pipeline for in-depth evaluation and standardized reporting of MS/HDMS/UDMS based label-free proteomics data [1].

Methods
Tryptic HeLa cell lysate was analyzed in MS\(^5\)/HDMS\(^5\) and UDM5 acquisition modes on a Waters Synapt G2-S mass spectrometer using 90 and 180 min gradients. PLGS (version >2.5, Waters Corporation) was used for raw data processing and for peptide and protein identification. ISOQuant was used for downstream analysis.

Data Analysis Workflow

Results
Identified peptides and proteins from tryptic digest of HeLa lysate analyzed in MS\(^5\), HDMS\(^5\) and UDM5 acquisition modes before/after ISOQuant analysis at 1% FDR.

ISOQuant reduces the overall number of identifications but increases the number of identified peptides per technical replicate as well as the overlap between technical replicates on peptide and protein level.

The increased overlap among technical replicates of identified proteins (at 1% FDR) for UDM5 goes along with the reduction of the technical replicate variance of the calculated protein amounts.

We produced a model dataset to evaluate the performance of label-free protein quantification. Tryptic digests of HeLa, yeast and E.coli proteomes were combined in exactly known ratios and analyzed in multiple technical replicates.

Availability
Please visit www.isoquant.net to obtain current version of ISOQuant. Installation packages are available for Windows, Mac OSX and UNIX/Linux operating systems.

Bibliography

Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft (DFG, ZE 335) and the Research Center for Immunotherapy (ZFI) of the UMC of the Johannes Gutenberg University Mainz. We are thankful to Yasser Pérez-Ríverol for supporting with the mzIdentML specifications.